Mekanika

Tinggalkan komentar

Mekanika (Bahasa Latin mechanicus, dari Bahasa Yunani mechanikos, “seseorang yang ahli di bidang mesin”) adalah jenis ilmu khusus yang mempelajari fungsi dan pelaksanaan mesin, alat atau benda yang seperti mesin.mekanika merupakan bagian yang sangat penting dalam ilmu fisika terutama untuk ahli saints dan ahli teknik.

Mekanika (Mechanics) juga berarti ilmu pengetahuan yang mempelajari gerakan suatu benda serta efek gaya dalam gerakan itu. Cabang ilmu Mekanika terbagi dua ; Mekanika Statik dan Mekanika Dinamik , sedang Mekanika Dinamik dapat dibagi dua pula , yaitu Kinematik dan Kinetik.

Mekanika Teknik

Mekanika teknik atau dikenal juga sebagai mekanika rekayasa atau analisa struktur merupakan bidang ilmu utama yang dipelajari di ilmu teknik sipil. Pokok utama dari ilmu tersebut adalah mempelajari perilaku struktur terhadap beban yang bekerja padanya. Perilaku struktur tersebut umumnya adalah lendutan dan gaya-gaya (gaya reaksi dan gaya internal).

Dalam mempelajari perilaku struktur maka hal-hal yang banyak dibicarakan adalah

  • stabilitas
  • keseimbangan gaya
  • kompatibilitas antara deformasi dan jenis tumpuannnya
  • elastisitas

Dengan mengetahui gaya-gaya dan lendutan yang terjadi maka selanjutnya struktur tersebut dapat direncanakan atau diproporsikan dimensinya berdasarkan material yang digunakan sehingga aman dan nyaman (lendutannya tidak berlebihan) dalam menerima beban tersebut.

Mekanika Kuantum

Mekanika kuantum adalah cabang dasar fisika yang menggantikan mekanika klasik pada tataran atom dan subatom. Ilmu ini memberikan kerangka matematikauntuk berbagai cabang fisika dan kimia, termasuk fisika atomfisika molekularkimia komputasikimia kuantumfisika partikel, dan fisika nuklir. Mekanika kuantum adalah bagian dari teori medan kuantum dan fisika kuantum umumnya, yang, bersama relativitas umum, merupakan salah satu pilar fisika modern. Dasar dari mekanika kuantum adalah bahwa energi itu tidak kontinyu, tapi diskrit — berupa ‘paket’ atau ‘kuanta’. Konsep ini cukup revolusioner, karena bertentangan dengan fisika klasik yang berasumsi bahwa energi itu berkesinambungan.

Sejarah

Pada tahun 1900Max Planck memperkenalkan ide bahwa energi dapat dibagi-bagi menjadi beberapa paket atau kuanta. Ide ini secara khusus digunakan untuk menjelaskan sebaran intensitas radiasi yang dipancarkan oleh benda hitam. Pada tahun 1905Albert Einstein menjelaskan efek fotoelektrik dengan menyimpulkan bahwa energi cahaya datang dalam bentuk kuanta yang disebut foton. Pada tahun 1913Niels Bohr menjelaskan garis spektrum dari atom hidrogen, lagi dengan menggunakan kuantisasi. Pada tahun 1924Louis de Broglie memberikan teorinya tentang gelombang benda.

Teori-teori di atas, meskipun sukses, tetapi sangat fenomenologikal: tidak ada penjelasan jelas untuk kuantisasi. Mereka dikenal sebagai teori kuantum lama.

Frase “Fisika kuantum” pertama kali digunakan oleh Johnston dalam tulisannya Planck’s Universe in Light of Modern Physics (Alam Planck dalam cahaya Fisika Modern).

Mekanika kuantum modern lahir pada tahun 1925, ketika Werner Karl Heisenberg mengembangkan mekanika matriks dan Erwin Schrödinger menemukan mekanika gelombang dan persamaan Schrödinger. Schrödinger beberapa kali menunjukkan bahwa kedua pendekatan tersebut sama.

Heisenberg merumuskan prinsip ketidakpastiannya pada tahun 1927, dan interpretasi Kopenhagen terbentuk dalam waktu yang hampir bersamaan. Pada 1927Paul Dirac menggabungkan mekanika kuantum dengan relativitas khusus. Dia juga membuka penggunaan teori operator, termasuk notasi bra-ket yang berpengaruh. Pada tahun 1932Neumann Janos merumuskan dasar matematika yang kuat untuk mekanika kuantum sebagai teori operator.

Bidang kimia kuantum dibuka oleh Walter Heitler dan Fritz London, yang mempublikasikan penelitian ikatan kovalen dari molekul hidrogen pada tahun 1927. Kimia kuantum beberapa kali dikembangkan oleh pekerja dalam jumlah besar, termasuk kimiawan Amerika Linus Pauling.

Berawal pada 1927, percobaan dimulai untuk menggunakan mekanika kuantum ke dalam bidang di luar partikel satuan, yang menghasilkan teori medan kuantum. Pekerja awal dalam bidang ini termasuk Dirac, Wolfgang PauliVictor Weisskopf dan Pascaul Jordan. Bidang riset area ini dikembangkan dalam formulasi elektrodinamika kuantum oleh Richard FeynmanFreeman DysonJulian Schwinger, dan Tomonaga Shin’ichirō pada tahun 1940-an. Elektrodinamika kuantum adalah teori kuantum elektronpositron, dan Medan elektromagnetik, dan berlaku sebagai contoh untuk teori kuantum berikutnya.

Interpretasi banyak dunia diformulasikan oleh Hugh Everett pada tahun 1956.

Teori Kromodinamika kuantum diformulasikan pada awal 1960an. Teori yang kita kenal sekarang ini diformulasikan oleh Polizter, Gross and Wilzcek pada tahun 1975. Pengembangan awal oleh Schwinger, Peter Higgs, Goldstone dan lain-lain. Sheldon Lee GlashowSteven Weinberg dan Abdus Salam menunjukan secara independen bagaimana gaya nuklir lemah dan elektrodinamika kuantum dapat digabungkan menjadi satu gaya lemah elektro.

Eksperimen penemuan

Bukti dari mekanika kuantum

Mekanika kuantum sangat berguna untuk menjelaskan perilaku atom dan partikel subatomik seperti protonneutron dan elektron yang tidak mematuhi hukum-hukum fisika klasikAtom biasanya digambarkan sebagai sebuah sistem di mana elektron (yang bermuatan listrik negatif) beredar seputar nukleus atom (yang bermuatan listrik positif). Menurut mekanika kuantum, ketika sebuah elektron berpindah dari tingkat energi yang lebih tinggi (misalnya dari n=2 atau kulit atom ke-2 ) ke tingkat energi yang lebih rendah (misalnya n=1 atau kulit atom tingkat ke-1), energi berupa sebuah partikel cahaya yang disebut foton, dilepaskan. Energi yang dilepaskan dapat dirumuskan sbb:

E = hf\!

keterangan:

  • E\! adalah energi (J)
  • h\! adalah tetapan Planck, h = 6.63 \times 10^{-34}\! (Js), dan
  • f\! adalah frekuensi dari cahaya (Hz)

Dalam spektrometer massa, telah dibuktikan bahwa garis-garis spektrum dari atom yang di-ionisasi tidak kontinyu, hanya pada frekuensi/panjang gelombang tertentu garis-garis spektrum dapat dilihat. Ini adalah salah satu bukti dari teori mekanika kuantum.

Sumber ;  http://id.wikipedia.org/wiki

Iklan

Matematika Diskrit

Tinggalkan komentar

Matematika secara umum ditegaskan sebagai penelitian pola dari struktur, perubahan, danruang; tak lebih resmi, seorang mungkin mengatakan adalah penelitian bilangan dan angka’. Dalam pandangan formalis, matematika adalah pemeriksaan aksioma yang menegaskanstruktur abstrak menggunakan logika simbolik dan notasi matematika; pandangan lain tergambar dalam filosofi matematika.

Matematika diskret atau diskrit adalah cabang matematika yang membahas segala sesuatu yang bersifat diskret. Diskret disini artinya tidak saling berhubungan (lawan dari kontinyu). Beberapa hal yang dibahas dalam matematika ini adalah teori himpunan, teori kombinatorial, permutasi, relasi, fungsi, rekursif, teori graf, dan lain-lain. Matematika diskret merupakan mata kuliah utama dan dasar untuk bidang ilmu komputer atau informatika.

Struktur spesifik yang diselidiki oleh matematikus sering mempunyai berasal dari ilmu pengetahuan alam, sangat umum di fisika, tetapi mathematikus juga menegaskan dan menyelidiki struktur untuk sebab hanya dalam saja sampai ilmu pasti, karena struktur mungkin menyediakan, untuk kejadian, generalisasi pemersatu bagi beberapa sub-bidang, atau alat membantu untuk perhitungan biasa. Akhirnya, banyak matematikus belajar bidang dilakukan mereka untuk sebab yang hanya estetis saja, melihat ilmu pasti sebagai bentukseni daripada sebagai ilmu praktis atau terapan.

Kombinasi adalah menggabungkan beberapa objek dari suatu grup tanpa memperhatikan urutan. Di dalam kombinasi, urutan tidak diperhatikan.

{1,2,3} adalah sama dengan {2,3,1} dan {3,1,2}.

Contoh: Seorang anak hanya diperbolehkan mengambil dua buah amplop dari tiga buah amplop yang disediakan yaitu amplop A, amplop B dan amplop C. Tentukan ada berapa banyak kombinasi untuk mengambil dua buah amplop dari tiga buah amplop yang disediakan?

Solusi: Ada 3 kombinasi yaitu; A-B, A-C dan B-C.

Sedangkan permutasi adalah menggabungkan beberapa objek dari suatu grup dengan memperhatikan urutan. Di dalam permutasi, urutan diperhatikan.

{1,2,3} tidak sama dengan {2,3,1} dan {3,1,2}

Contoh: Ada sebuah kotak berisi 3 bola masing-masing berwarna merah, hijau dan biru. Jika seorang anak ditugaskan untuk mengambil 2 bola secara acak dan urutan pengambilan diperhatikan, ada berapa permutasi yang terjadi?

Solusi: Ada 6 permutasi yaitu; M-H, M-B, H-M, H-B, B-M, B-H.

Salah satu aplikasi kombinasi dan permutasi adalah digunakan untuk mencari probabilitassuatu kejadian.

Rumus
Permutasi pengulangan

Jika urutan diperhatikan dan suatu objek dapat dipilih lebih dari sekali maka jumlah permutasinya adalah:

di mana n adalah banyaknya objek yang dapat dipilih dan r adalah jumlah yang harus dipilih.

Sebagai contoh, jika kamu memiliki huruf A, B, C, dan D dan kamu ingin mencari tahu ada berapa cara untuk menyusunnya dalam suatu grup yang berisi tiga angka maka kamu akan menemukan bahwa ada 43 atau 64 cara untuk menyusunnya. Beberapa cara untuk menyusunnya adalah: AAA, BBB, CCC, DDD, ABB, CBB, DBB, dst.
Permutasi tanpa pengulangan

Jika urutan diperhatikan dan setiap objek yang tersedia hanya bisa dipilih atau dipakai sekali maka jumlah permutasi yang ada adalah:

di mana n adalah jumlah objek yang dapat kamu pilih, r adalah jumlah yang harus dipilih dan! adalah simbol faktorial.

Sebagai contoh, ada sebuah pemungutan suara dalam suatu organisasi. Kandidat yang bisa dipilih ada lima orang. Yang mendapat suara terbanyak akan diangkat menjadi ketua organisasi tersebut. Yang mendapat suara kedua terbanyak akan diangkat menjadi wakil ketua. Dan yang mendapat suara ketiga terbanyak akan menjadi sekretaris. Ada berapa banyak hasil pemungutan suara yang mungkin terjadi? Dengan menggunakan rumus di atas maka ada 5!/(5-3)! = 60 permutasi.

Umpamakan jika n = r (yang menandakan bahwa jumlah objek yang bisa dipilih sama dengan jumlah yang harus dipilih) maka rumusnya menjadi:

karena 0! = 1! = 1

Sebagai contoh, ada lima kotak kosong yang tersedia. Kelima kotak kosong itu harus diisi (tidak boleh ada yang kosong). Kelima kotak kosong itu hanya boleh diisi dengan angka 1,2,3,4,5. Ada berapa banyak cara untuk mengisi kotak kosong? Dengan menggunakan rumus n! maka ada 5! = 120 permutasi.
Kombinasi tanpa pengulangan

Ketika urutan tidak diperhatikan akan tetapi setiap objek yang ada hanya bisa dipilih sekali maka jumlah kombinasi yang ada adalah:

Di mana n adalah jumlah objek yang bisa dipilih dan r adalah jumlah yang harus dipilih.

Sebagai contoh, kamu mempunyai 5 pensil warna dengan warna yang berbeda yaitu; merah, kuning, hijau, biru dan ungu. Kamu ingin membawanya ke sekolah. Tapi kamu hanya boleh membawa dua pensil warna. Ada berapa banyak cara untuk mengkombinasikan pensil warna yang ada? Dengan menggunakan rumus di atas maka ada 5!/(5-2)!(2)! = 10 kombinasi.
Kombinasi pengulangan

Jika urutan tidak diperhatikan dan objek bisa dipilih lebih dari sekali, maka jumlah kombinasi yang ada adalah:

Di mana n adalah jumlah objek yang bisa dipilih dan r adalah jumlah yang harus dipilih. Sebagai contoh jika kamu pergi ke sebuah toko donat. Toko donut itu menyediakan 10 jenis donat berbeda. Kamu ingin membeli tiga donat. Maka kombinasi yang dihasilkan adalah (10+3-1)!/3!(10-1)! = 220 kombinasi

Sumber ; http://id.wikipedia.org/wiki

Komputer

Tinggalkan komentar

Definsi

Komputer adalah alat yang dipakai untuk mengolah informasi menurut prosedur yang telah dirumuskan. Kata computer semula dipergunakan untuk menggambarkan orang yang perkerjaannya melakukan perhitungan aritmatika, dengan atau tanpa alat bantu, tetapi arti kata ini kemudian dipindahkan kepada mesin itu sendiri. Asal mulanya, pengolahan informasi hampir eksklusif berhubungan dengan masalah aritmatika, tetapi komputer modern dipakai untuk banyak tugas yang tidak berhubungan dengan matematika.

Dalam definisi seperti itu terdapat alat seperti slide rule, jenis kalkulator mekanik mulai dari abakus dan seterusnya, sampai semua komputer elektronik yang kontemporer. Istilah lebih baik yang cocok untuk arti luas seperti “komputer” adalah “yang memproses informasi” atau “sistem pengolah informasi.”

Diskripsi

Sekalipun demikian, definisi di atas mencakup banyak alat khusus yang hanya bisa memperhitungkan satu atau beberapa fungsi. Ketika mempertimbangkan komputer modern, sifat mereka yang paling penting yang membedakan mereka dari alat menghitung yang lebih awal ialah bahwa, dengan pemrograman yang benar, semua komputer dapat mengemulasi sifat apa pun (meskipun barangkali dibatasi oleh kapasitas penyimpanan dan kecepatan yang berbeda), dan, memang dipercaya bahwa mesin sekarang bisa meniru alat perkomputeran yang akan kita ciptakan di masa depan (meskipun niscaya lebih lambat). Dalam suatu pengertian, batas kemampuan ini adalah tes yang berguna karena mengenali komputer “maksud umum” dari alat maksud istimewa yang lebih awal. Definisi dari “maksud umum” bisa diformulasikan ke dalam syarat bahwa suatu mesin harus dapat meniru Mesin Turing universal. Mesin yang mendapat definisi ini dikenal sebagai Turing-lengkap, dan yang pertama mereka muncul pada tahun 1940 di tengah kesibukan perkembangan di seluruh dunia. Lihat artikel sejarah perkomputeran untuk lebih banyak detail periode ini.

Komputer Benam

Pada sekitar 20 tahun terakhir, banyak alat rumahtangga, khususnya termasuk panel dari permainan video tetapi juga mencakup telepon genggam, perekam kaset video, PDA dan banyak sekali dalam rumahtangga, industri, otomotif, dan alat elektronik lain, semua berisi sirkuit elektronik yang seperti komputer yang memenuhi syarat Turing-lengkap di atas (dengan catatan bahwa program dari alat ini seringkali dibuat secara langsung di dalam chip ROM yang akan perlu diganti untuk mengubah program mesin). Komputer maksud khusus lainnya secara umum dikenal sebagai “mikrokontroler” atau “komputer benam” (embedded computer). Oleh karena itu, banyak yang membatasi definisi komputer kepada alat yang maksud pokoknya adalah pengolahan informasi, daripada menjadi bagian dari sistem yang lebih besar seperti telepon, oven mikrowave, atau pesawat terbang, dan bisa diubah untuk berbagai maksud oleh pemakai tanpa modifikasi fisik. Komputer kerangka utama, minikomputer, dan komputer pribadi (PC) adalah macam utama komputer yang mendapat definisi ini.

Komputer Pribadi

Akhirnya, banyak orang yang tak akrab dengan bentuk komputer lain memakai istilah ini secara eksklusif untuk menunjuk kepada komputer pribadi (PC).

Bagaimana Komputer Bekerja

Saat teknologi yang dipakai pada komputer digital sudah berganti secara dramatis sejak komputer pertama pada tahun 1940-an (lihat Sejarah perangkat keras menghitung untuk lebih banyak detail), komputer kebanyakan masih menggunakan arsitektur Von Neumann, yang diusulkan di awal 1940-an oleh John von Neumann.

Arsitektur Von Neumann menggambarkan komputer dengan empat bagian utama: Unit Aritmatika dan Logis (ALU), unit kontrol, memori, dan alat masukan dan hasil (secara kolektif dinamakan I/O). Bagian ini dihubungkan oleh berkas kawat, “bus”

Memori

modul memori RAM

Di sistem ini, memori adalah urutan byte yang dinomori (seperti “sel” atau “lubang burung dara”), masing-masing berisi sepotong kecil informasi. Informasi ini mungkin menjadi perintah untuk mengatakan pada komputer apa yang harus dilakukan. Sel mungkin berisi data yang diperlukan komputer untuk melakukan suatu perintah. Setiap slot mungkin berisi salah satu, dan apa yang sekarang menjadi data mungkin saja kemudian menjadi perintah.

Memori menyimpan berbagai bentuk informasi sebagai angka biner. Informasi yang belum berbentuk biner akan dipecahkan (encoded) dengan sejumlah instruksi yang mengubahnya menjadi sebuah angka atau urutan angka-angka. Sebagai contoh: Huruf F disimpan sebagai angka desimal 70 (atau angka biner ) menggunakan salah satu metode pemecahan. Instruksi yang lebih kompleks bisa digunakan untuk menyimpan gambar, suara, video, dan berbagai macam informasi. Informasi yang bisa disimpan dalam satu sell dinamakan sebuah byte.

Secara umum, memori bisa ditulis kembali lebih jutaan kali – memori dapat diumpamakan sebagai papan tulis dan kapur yang dapat ditulis dan dihapus kembali, daripada buku tulis dengan pena yang tidak dapat dihapus.

Ukuran masing-masing sel, dan jumlah sel, berubah secara hebat dari komputer ke komputer, dan teknologi dalam pembuatan memori sudah berubah secara hebat – dari relay elektromekanik, ke tabung yang diisi dengan air raksa (dan kemudian pegas) di mana pulsa akustik terbentuk, sampai matriks magnet permanen, ke setiap transistor, ke sirkuit terpadu dengan jutaan transistor di atas satu chip silikon.

Pemrosesan

Unit Pemproses Pusat atau CPU ( central processing unit) berperanan untuk memproses arahan, melaksanakan pengiraan dan menguruskan laluan informasi menerusi system komputer. Unit atau peranti pemprosesan juga akan berkomunikasi dengan peranti input , output dan storan bagi melaksanakan arahan-arahan berkaitan.
Berkas:CPU with pins.jpg
Contoh sebuah CPU dalam kemasan Ball Grid Array (BGA) ditampilkan terbalik dengan menunjukan kaki-kakinya

Dalam arsitektur von Neumann yang asli, ia menjelaskan sebuah Unit Aritmatika dan Logika, dan sebuah Unit Kontrol. Dalam komputer-komputer modern, kedua unit ini terletak dalam satu sirkuit terpadu (IC – Integrated Circuit), yang biasanya disebut CPU (Central Processing Unit).

Unit Aritmatika dan Logika, atau Arithmetic Logic Unit (ALU), adalah alat yang melakukan pelaksanaan dasar seperti pelaksanaan aritmatika (tambahan, pengurangan, dan semacamnya), pelaksanaan logis (AND, OR, NOT), dan pelaksanaan perbandingan (misalnya, membandingkan isi sebanyak dua slot untuk kesetaraan). Pada unit inilah dilakukan “kerja” yang nyata.

Unit kontrol menyimpan perintah sekarang yang dilakukan oleh komputer, memerintahkan ALU untuk melaksanaan dan mendapat kembali informasi (dari memori) yang diperlukan untuk melaksanakan perintah itu, dan memindahkan kembali hasil ke lokasi memori yang sesuai. Sekali yang terjadi, unit kontrol pergi ke perintah berikutnya (biasanya ditempatkan di slot berikutnya, kecuali kalau perintah itu adalah perintah lompatan yang memberitahukan kepada komputer bahwa perintah berikutnya ditempatkan di lokasi lain).

Input dan Hasil

I/O membolehkan komputer mendapatkan informasi dari dunia luar, dan menaruh hasil kerjanya di sana, dapat berbentuk fisik (hardcopy) atau non fisik (softcopy). Ada berbagai macam alat I/O, dari yang akrab keyboard, monitor dan disk drive, ke yang lebih tidak biasa seperti webcam (kamera web, printer, scanner, dan sebagainya.

Yang dimiliki oleh semua alat masukan biasa ialah bahwa mereka meng-encode (mengubah) informasi dari suatu macam ke dalam data yang bisa diolah lebih lanjut oleh sistem komputer digital. Alat output, men-decode data ke dalam informasi yang bisa dimengerti oleh pemakai komputer. Dalam pengertian ini, sistem komputer digital adalah contoh sistem pengolah data.

Instruksi

Perintah yang dibicarakan di atas tidak adalah perintah kaya bahasa manusiawi. Komputer hanya mempunyai dalam jumlah terbatas perintah sederhana yang dirumuskan dengan baik. Perintah biasa yang dipahami kebanyakan komputer ialah “menyalin isi sel 123, dan tempat tiruan di sel 456”, “menambahkan isi sel 666 ke sel 042, dan tempat akibat di sel 013”, dan “jika isi sel 999 adalah 0, perintah berikutnya anda di sel 345”.

Instruksi diwakili dalam komputer sebagai nomor – kode untuk “menyalin” mungkin menjadi 001, misalnya. Suatu himpunan perintah khusus yang didukung oleh komputer tertentu diketahui sebagai bahasa mesin komputer. Dalam prakteknya, orang biasanya tidak menulis perintah untuk komputer secara langsung di bahasa mesin tetapi memakai bahasa pemrograman “tingkat tinggi” yang kemudian diterjemahkan ke dalam bahasa mesin secara otomatis oleh program komputer khusus (interpreter dan kompiler). Beberapa bahasa pemrograman berhubungan erat dengan bahasa mesin, seperti assembler (bahasa tingkat rendah); di sisi lain, bahasa seperti Prolog didasarkan pada prinsip abstrak yang jauh dari detail pelaksanaan sebenarnya oleh mesin (bahasa tingkat tinggi)

Arsitektur

Komputer kontemporer menaruh ALU dan unit kontrol ke dalam satu sirkuit terpadu yang dikenal sebagai Central Processing Unit atau CPU. Biasanya, memori komputer ditempatkan di atas beberapa sirkuit terpadu yang kecil dekat CPU. Alat yang menempati sebagian besar ruangan dalam komputer adalah ancilliary sistem (misalnya, untuk menyediakan tenaga listrik) atau alat I/O.

Beberapa komputer yang lebih besar berbeda dari model di atas di satu hal utama – mereka mempunyai beberapa CPU dan unit kontrol yang bekerja secara bersamaan. Terlebih lagi, beberapa komputer, yang dipakai sebagian besar untuk maksud penelitian dan perkomputeran ilmiah, sudah berbeda secara signifikan dari model di atas, tetapi mereka sudah menemukan sedikit penggunaan komersial.

Fungsi dari komputer secara prinsip sebenarnya cukup sederhana. Komputer mencapai perintah dan data dari memorinya. Perintah dilakukan, hasil disimpan, dan perintah berikutnya dicapai. Ulang prosedur ini sampai komputer dimatikan.

Program

Program komputer adalah daftar besar perintah untuk dilakukan oleh komputer, barangkali dengan data di dalam tabel. Banyak program komputer berisi jutaan perintah, dan banyak dari perintah itu dilakukan berulang kali. Suatu [[Personal computer[PC]] modern yang umum (pada tahun 2003) bisa melakukan sekitar 2-3 milyar perintah dalam sedetik. Komputer tidak mendapat kemampuan luar biasa mereka lewat kemampuan untuk melakukan perintah kompleks. Tetapi, mereka melakukan jutaan perintah sederhana yang diatur oleh orang pandai, “programmer.” “Programmer Baik memperkembangkan set-set perintah untuk melakukan tugas biasa (misalnya, menggambar titik di layar) dan lalu membuat set-set perintah itu tersedia kepada programmer lain.” Dewasa ini, kebanyakan komputer kelihatannya melakukan beberapa program sekaligus. Ini biasanya diserahkan ke sebagai multitasking. Pada kenyataannya, CPU melakukan perintah dari satu program, kemudian setelah beberapa saat, CPU beralih ke program kedua dan melakukan beberapa perintahnya. Jarak waktu yang kecil ini sering diserahkan ke sebagai irisan waktu (time-slice). Ini menimbulkan khayal program lipat ganda yang dilakukan secara bersamaan dengan memberikan waktu CPU di antara program. Ini mirip bagaimana film adalah rangkaian kilat saja masih membingkaikan. Sistem operasi adalah program yang biasanya menguasai kali ini membagikan

Sistem Operasi

Sistem operasi ialah semacam gabungan dari potongan kode yang berguna. Ketika semacam kode komputer dapat dipakai secara bersama oleh beraneka-macam program komputer, setelah bertahun-tahun, programer akhirnya menmindahkannya ke dalam sistem operasi.

Sistem operasi, menentukan program yang mana dijalankan, kapan, dan alat yang mana (seperti memori atau I/O) yang mereka gunakan. Sistem operasi juga memberikan servis kepada program lain, seperti kode (driver) yang membolehkan programer untuk menulis program untuk suatu mesin tanpa perlu mengetahui detail dari semua alat elektronik yang terhubung.

Penggunaan Komputer

Komputer digital pertama, dengan ukuran dan biaya yang besar, sebagian besar mengerjakan perhitungan ilmiah. ENIAC, komputer awal AS semula didesain untuk memperhitungkan tabel ilmu balistik untuk persenjataan (artileri), menghitung kerapatan penampang neutron untuk melihat jika bom hidrogen akan bekerja dengan semestinya (perhitungan ini, yang dilakukan pada Desember 1945 sampai Januari 1946 dan melibatkan dala dalam lebih dari satu juta kartu punch, memperlihatkan bentuk lalu di bawah pertimbangan akan gagal). CSIR Mk I, komputer pertama Australia, mengevaluasi pola curah hujan untuk tempat penampungan dari Snowy Mountains, suatu proyek pembangkitan hidroelektrik besar. Yang lainnya juga dipakai dalam kriptanalisis, misalnya komputer elektronik digital yang pertama, Colossus, dibuat selama Perang Dunia II. Akan tetapi, visionaris awal juga menyangka bahwa pemrograman itu akan membolehkan main catur, memindahkan gambar dan penggunaan lain.

Orang-orang di pemerintah dan perusahaan besar juga memakai komputer untuk mengotomasikan banyak koleksi data dan mengerjakan tugas yang sebelumnya dikerjakan oleh manusia – misalnya, memelihara dan memperbarui rekening dan inventaris. Dalam bidang pendidikan, ilmuwan di berbagai bidang mulai memakai komputer untuk analisa mereka sendiri. Penurunan harga komputer membuat mereka dapat dipakai oleh organisasi yang lebih kecil. Bisnis, organisasi, dan pemerintah sering menggunakan amat banyak komputer kecil untuk menyelesaikan tugas bahwa dulunya dilakukan oleh komputer kerangka utama yang mahal dan besar. Kumpulan komputer yang lebih kecil di satu lokasi diserahkan ke sebagai perkebunan server.

Dengan penemuan mikroprosesor di 1970-an, menjadi mungkin menghasilkan komputer yang sangat murah. PC menjadi populer untuk banyak tugas, termasuk menyimpan buku, menulis dan mencetak dokumen. Perhitungan meramalkan dan lain berulang matematika dengan spreadsheet, berhubungan dengan e-pos dan, Internet. Namun, ketersediaan luas komputer dan mudah customization sudah melihat mereka dipakai untuk banyak maksud lain.

Sekaligus, komputer kecil, biasanya dengan mengatur memprogram, mulai menemukan cara mereka ke dalam alat lain seperti peralatan rumah, mobil, pesawat terbang, dan perlengkapan industri. Yang ini prosesor benam menguasai kelakuan alat seperti itu yang lebih mudah, membolehkan kelakuan kontrol yang lebih kompleks (untuk kejadian, perkembangan anti-kunci rem di mobil). Saat abad kedua puluh satu dimulai, kebanyakan alat listrik, kebanyakan bentuk angkutan bertenaga, dan kebanyakan batas produksi pabrik dikuasai di samping komputer. Kebanyakan insinyur meramalkan bahwa ini cenderung kepada akan terus.

Kata “Komputer”

Selama bertahun-tahun sudah ada beberapa arti yang agak berbeda pada kata ‘komputer’, dan beberapa kata berbeda untuk hal kami sekarang biasanya disebut komputer.

Misalnya “computer” secara umum pernah dipergunakan untuk bermaksud orang memperkerjakan untuk melakukan perhitungan aritmatika, dengan atau tanpa mesin membantu. Menurut Barnhart Concise Dictionary of Etymology, kata tersebut digunakan dalam bahasa Inggris pada tahun 1646 sebagai kata bagi “orang yang menghitung” dan lalu menjelang 1897 juga untuk “alat hitung mekanis”. Selama Perang Dunia II kata tersebut menunjuk kepada para pekerja wanita AS dan Inggris yang pekerjaannya memperhitungkan jalan artileri perang besar dengan mesin seperti itu.

Charles Babbage mendesain salah satu mesin menghitung pertama disebut Mesin Analitikal, tetapi karena masalah teknologi tidak dibuat seumur hidupnya. Berbagai alat mesin yang sederhana seperti slide rule baik juga sudah menyebut komputer. Di beberapa kasus mereka diserahkan ke sebagai “komputer analog”, sewaktu mereka melambangkan nomor oleh continuous kuantitas-kuantitas fisik daripada di samping digit biner yang berlainan. Apa sekarang menyebut “komputer” saja secara umum pernah menyebut “komputer digital” untuk membedakan mereka dari alat lain ini (yang masih dipakai di bidang analog pengolahan tanda, misalnya).

In yang memikirkan kata lain untuk komputer, itu ialah harga mengamati bahwa di bahasa lain kata yang dipilih selalu tidak mempunyai arti harfiah sama sebagai kata Bahasa Inggris. Dalam Bahasa Perancis misalnya, kata ialah “ordinateur”, yang berarti kira-kira “organisator”, atau “memisahkan mesin”. Pada bahasa Spanyol digunakan kata “ordenador”, dengan arti sama, walaupun di beberapa negara mereka menggunakan anglicism computadora. Dalam Bahasa Italia, komputer ialah “calcolatore”, kalkulator, menekankannya computational menggunakan di balik yang logis seperti penyortiran. Dalam Bahasa Swedia, komputer dipanggil “dator” dari “data”. Atau paling tidak pada tahun 1950-an, mereka disebut “matematikmaskin” (mesin matematika). Dalam Bahasa Tionghoa, komputer dipanggil “dien nau” atau suatu “otak listrik”. Dalam Bahasa Inggris, kata lain dan frase sudah bekas, seperti “mesin pengolahan data”.

Bagian-Bagian Komputer

Komputer terdiri atas 2 bagian besar : Software/perangkat lunak dan hardware/perangkat keras.

Hardware
Prosesor, atau CPU unit yang mengolah data
Memori RAM, tempat menyimpan data sementara
Hard drive, media penyimpanan semi permanen
Perangkat masukan, media yang digunakan untuk memasukkan data untuk diproses oleh CPU, seperti mouse, keyboard, dan tablet
Perangkat keluaran, media yang digunakan untuk menampilkan hasil keluaran pemrosesan CPU, seperti monitor dan printer.

Software
Sistem operasi : Program dasar pada komputer yang menghubungkan pengguna dengan hardware komputer, seperti Linux, Windows, dan Mac OS. Tugas sistem operasi termasuk (tetapi tidak hanya) mengurus penjalanan program di atasnya, koordinasi Input, Output, pemrosesan, memori, serta penginstalan dan pembuangan software.
Program komputer, aplikasi tambahan yang diinstal sesuai dengan sistem operasinya

Slot pada komputer
ISA / PCI : Slot untuk masukan kartu tambahan non-grafis
AGP / PCIe : Slot untuk masukan kartu tambahan grafis
IDE / SCSI / SATA : Slot untuk harddrive/ODD
USB : Slot untuk masukan media plug-and-play (colok dan mainkan, artinya perangkat yang dapat dihubungkan ke komputer dan langsung dapat digunakan)

Sumber ; Sumber ; http://id.wikipedia.org/wiki

SIM Geografis

Tinggalkan komentar

Definisi

Sistem Informasi Geografis (bahasa Inggris: Geographic Information System disingkat GIS) adalah sistem informasi khusus yang mengelola data yang memiliki informasi spasial (bereferensi keruangan). Atau dalam arti yang lebih sempit, adalah sistem komputer yang memiliki kemampuan untuk membangun, menyimpan, mengelola dan menampilkan informasi berefrensi geografis, misalnya data yang diidentifikasi menurut lokasinya, dalam sebuah database. Para praktisi juga memasukkan orang yang membangun dan mengoperasikannya dan data sebagai bagian dari sistem ini.

Teknologi Sistem Informasi Geografis dapat digunakan untuk investigasi ilmiah, pengelolaan sumber daya, perencanaan pembangunan, kartografi dan perencanaan rute. Misalnya, SIG bisa membantu perencana untuk secara cepat menghitung waktu tanggap darurat saat terjadi bencana alam, atau SIG dapat digunaan untuk mencari lahan basah (wetlands) yang membutuhkan perlindungan dari polusi.

Sejarah

35000 tahun yang lalu, di dinding gua Lascaux, Perancis, para pemburu Cro-Magnon menggambar hewan mangsa mereka, juga garis yang dipercaya sebagai rute migrasi hewan-hewan tersebut. Catatan awal ini sejalan dengan dua elemen struktur pada sistem informasi gegrafis modern sekarang ini, arsip grafis yang terhubung ke database atribut.

Pada tahun 1700-an teknik survey modern untuk pemetaan topografis diterapkan, termasuk juga versi awal pemetaan tematis, misalnya untuk keilmuan atau data sensus.

Awal abad ke-20 memperlihatkan pengembangan “litografi foto” dimana peta dipisahkan menjadi beberapa lapisan (layer). Perkembangan perangkat keras komputer yang dipacu oleh penelitian senjata nuklir membawa aplikasi pemetaan menjadi multifungsi pada awal tahun 1960-an.

Tahun 1967 merupakan awal pengembangan SIG yang bisa diterapkan di Ottawa, Ontario oleh Departemen Energi, Pertambangan dan Sumber Daya. Dikembangkan oleh Roger Tomlinson, yang kemudian disebut CGIS (Canadian GIS – SIG Kanada), digunakan untuk menyimpan, menganalisis dan mengolah data yang dikumpulkan untuk Inventarisasi Tanah Kanada (CLI – Canadian land Inventory) – sebuah inisiatif untuk mengetahui kemampuan lahan di wilayah pedesaan Kanada dengan memetakaan berbagai informasi pada tanah, pertanian, pariwisata, alam bebas, unggas dan penggunaan tanah pada skala 1:250000. Faktor pemeringkatan klasifikasi juga diterapkan untuk keperluan analisis.

GIS dengan gvSIG.

CGIS merupakan sistem pertama di dunia dan hasil dari perbaikan aplikasi pemetaan yang memiliki kemampuan timpang susun (overlay), penghitungan, pendijitalan/pemindaian (digitizing/scanning), mendukung sistem koordinat national yang membentang di atas benua Amerika , memasukkan garis sebagai arc yang memiliki topologi dan menyimpan atribut dan informasi lokasional pada berkas terpisah. Pengembangya, seorang geografer bernama Roger Tomlinson kemudian disebut “Bapak SIG”.

CGIS bertahan sampai tahun 1970-an dan memakan waktu lama untuk penyempurnaan setelah pengembangan awal, dan tidak bisa bersaing denga aplikasi pemetaan komersil yang dikeluarkan beberapa vendor seperti Intergraph. Perkembangan perangkat keras mikro komputer memacu vendor lain seperti ESRI, CARIS, MapInfo dan berhasil membuat banyak fitur SIG, menggabung pendekatan generasi pertama pada pemisahan informasi spasial dan atributnya, dengan pendekatan generasi kedua pada organisasi data atribut menjadi struktur database. Perkembangan industri pada tahun 1980-an dan 1990-an memacu lagi pertumbuhan SIG pada workstation UNIX dan komputer pribadi. Pada akhir abad ke-20, pertumbuhan yang cepat di berbagai sistem dikonsolidasikan dan distandarisasikan menjadi platform lebih sedikit, dan para pengguna mulai mengekspor menampilkan data SIG lewat internet, yang membutuhkan standar pada format data dan transfer.

Indonesia sudah mengadopsi sistem ini sejak Pelita ke-2 ketika LIPI mengundang UNESCO dalam menyusun “Kebijakan dan Program Pembangunan Lima Tahun Tahap Kedua (1974-1979)” dalam pembangunan ilmu pengetahuan, teknologi dan riset.

Jenjang pendidikan SMU/senior high school melalui kurikulum pendidikan geografi SIG dan penginderaan jauh telah diperkenalkan sejak dini. Universitas di Indonesia yang membuka program Diploma SIG ini adalah D3 Penginderaan Jauh dan Sistem Informasi Geografi, Fakultas Geografi, Universitas Gadjah Mada, tahun 1999. Sedangkan jenjang S1 dan S2 telah ada sejak 1991 dalam Jurusan Kartografi dan Penginderaan Jauh, Fakultas Geografi, Universitas Gadjah Mada. Sejauh ini SIG sudah dikembangkan hampir disemua universitas di Indonesia melalui laboratorium-laboratorium, kelompok studi/diskusi maupun matapelajaran.

Sumber ; http://id.wikipedia.org/wiki

Konsep dasar SIM Geografis

Pertengahan 1970-an telah dikembangkan sistem-sistem yang secara khusus dibuat untuk menangani masalah informasi yang bereferansi geografis dalam berbagai cara dan bentuk. Masalah-masalah ini mencakup:

  1. Pengorganisasian data dan informasi.
  2. Penempatan informasi pada lokasi tertentu.
  3. Melakukan komputasi, memberikan ilusi keterhubungan satu sama lainnya (koneksi), beserta analisa-analisa spasial lainnya.

Sebutan umum untuk sistem-sistem yang menangani masalah-masalah tersebut adalah Sistem Informasi Geografis. Dalam literatur, Sistem Informasi Geografis dipandang sebagai hasil perpaduan antara sistem komputer untuk bidang Kartografi (CAC) atau sistem komputer untuk bidang perancangan (CAD) dengan teknologi basis data (data base).

Pada awalnya, data geografis hanya disajikan di atas peta dengan menggunakan symbol, garis dan warna. Elemen-elemen geografis ini dideskripsikan di dalam legendanya misalnya: garis hitam tebal untuk jalan utama, garis hitam tipis untuk jalan sekunder dan jalan-jalan yang berikutnya.

Selain itu, berbagai data yang di-overlay-kan berdasarkan sistem koordinat yang sama. Akibatnya sebuah peta menjadi media yang efektif baik sebagai alat presentasi maupun sebagai bank tempat penyimpanan data geografis. Tetapi media peta masih mengandung kelemahan atau keterbatasan. Informasi-informasi yang disimpan, diproses dan dipresentasikan dengan suatu cara tertentu, dan biasanya untuk tujuan tertentu pula, tidak mudah untuk merubah presentasi tersebut karena peta selalu menyediakan gambar atau simbol unsur geografis dengan bentuk yang tetap walaupun diperlukan untuk kebutuhan yang berbeda.

Diskripsi SIM Geografis

Sistem Informasi Geografis (SIG) adalah suatu prosedur manual atau beberapa set berbasis komputer dari prosedur-prosedur yang digunakan untuk mengumpulkan atau memanipulasi data geografis. SIG dapat juga diartikan sebagai himpunan atau kumpulan yang terpadu dari hardware, software, data dan liveware (orang-orang yang bertanggungjawab dalam merancang, mengimplemantasikan dan menggunakan SIG). SIG juga merupakan hasil dari perpaduan disiplin ilmu didalam beberapa proses data spasial. Hal ini dapat dilihat dari gambar berikut ini

Berdasarkan pengertian-pengertian diatas, maka Sistem Informasi Geografis (SIG) dapat berfungsi sebagai: bank data terpadu, yaitu dapat memandu data spasial dan non spasial dalam suatu basis data terpadu; sistem modeling dan analisi, yaitu dapat digunakan sebagai sarana evaluasi potensi wilayah dan perencanaan spasial; sistem pengelolaan yang bereferensi geografis, yaitu untuk mengelola operasianal dan administrasi lokasi geografis; sebagai sistem pemetaan komputasi, yaitu sistem yang dapat menyajikan peta sesuai dengan kebutuhan.

Subsistem SIG

Sistem Informasi Geografis dapat diuraikan menjadi beberapa subsistem sebagai berikut:

  1. Data Input: Subsistem ini bertugas untuk mengumpulkan data dan mempersiapkan data spasial dan atribut dari berbagai sumber dan bertanggung jawab dalam mengkonversi atau mentransfortasikan format-format data-data aslinya kedalam format yang dapat digunakan oleh SIG.
  2. Data output: Subsistem ini menampilkan atau menghasilkan keluaran seluruh atau sebagian basis data baik dalam bentuk softcopy maupun bentuk hardcopy seperti: tabel, grafik dan peta.
  3. Data Management: Subsistem ini mengorganisasikan baik data spasial maupun data atribut ke dalam sebuah basis data sedemikian rupa sehingga mudah dipanggil, di-update dan di-edit.
  4. Data Manipulation & Analysis: Subsistem ini menentukan informasi-informasi yang dapat dihasilkan oleh SIG dan melakukan manipulasi serta pemodelan data untuk menghasilkan informasi yang diharapkan.

Sumber ; http:/imamwardany.com/sistem-infor

Metode Penelitian

Tinggalkan komentar

Metodologi penelitian pada hakekatnya merupakan operasionalisasi dari epistemologi kearah pelaksanaan penelitian. Epistemologi memberi pemahaman tentang cara/teori menemukan atau menyusun pengetahuan dari idea, materi atau dari kedua-duanya serta merujuk pada penggunaan rasio, intuisi, fenomena atau dengan metode ilmiah  (Rusidi, 2004 :3).

Sehingga bagaimana menemukan atau menyusun pengetahuan memerlukan kajian atau pemahaman tentang metode-metode. Dalam pengertian ini perlu dibedakan antara metode dan teknik. Secara keilmuan, metode dapat diartikan sebagai cara berpikir, sedangkan teknik diartikan sebagai cara melaksanakan hasil berpikir. Jadi dengan demikian metodologi penelitian itu diartikan sebagai pemahaman metode-metode penelitian dan pemahaman teknik-teknik penelitian.

Makna penelitian secara sederhana ialah bagaimanakah mengetahui sesuatu yang dilakukan melalui cara tertentu dengan prosedur yang sistematis (Garna, 2000:1). Proses sistematis ini tidak lain adalah langkah-langkah metode ilmiah. Jadi pengertian dari metodologi penelitian itu dapat diartikan sebagai pengkajian atau pemahaman tentang cara berpikir dan cara melaksanakan hasil berpikir menurut langkah-langkah ilmiah.

Terhadap cara untuk mengetahui dan memahami sesuatu, Babbie (1992) berpendapat :” … science as a method of inquiry – away of learning and knowing things about the world around us “. Dengan demikian untuk memahami dan mempelajari sesuatu yang terjadi di sekeliling kita akan terdapat banyak cara. Walaupun demikian ilmu tetap memiliki ciri tertentu, yang sesungguhnya ciri tersebut berada dalam berbagai aktivitas yang dilakukan sehari-hari. Menurut Pierce (dalam Kerlinger, 1973) terdapat empat metode untuk memahami sesuatu (methods of knowing) yaitu : the method of tenacity (wahyu), the method of authority (otoritas),the a priory method (intuisi) dan the method of science (metode ilmiah). Penelitian termasuk ke dalam metode ilmiah, sebagai metode memahami yang paling baik guna memperoleh kebenaran ilmiah.

Lalu bagaimana dengan system dynamics ?, Richardson and Pugh III (1981) mengatakan : ” system dynamics is a methodology for understanding certain kinds of complex problems”.Yang dimaksud dengan metodologi di sini tidak lain adalah ilmu tentang cara menyangkut logika dalam penelitian ilmiah, yakni keseluruhan sistem, metode, peraturan dan hipotesa yang dipakai dalam memahami permasalahan yang kompleks. Metodologi system dynamics itu sendiri sejalan dengan konsep paradigma yang dipopulerkan oleh Thomas Kuhn dalam bukunya berjudul “ The Structure Of Scientific Revolutions “. Paradigma secara umum diartikan sebagai model atau skema. Pemodelan dengan metodologi system dynamics ini makin berkembang pesat sejak diperkenalkan oleh Jay W. Forrester dalam bukunya “ Industrial Dynamics “. Model yang dibuat pada dasarnya merupakan hasil dari suatu upaya untuk membuat tiruan dari dunia nyatanya (Burger, 1966). Untuk mewujudkan hal tersebut, suatu pemodelan haruslah memenuhi (sesuai dengan) metode ilmiah. Saeed (1984) telah melukiskan metode ilmiah ini berdasarkan kepada konsep penyangkalan (refutation) Popper (1969). Metode ini mensyaratkan bahwa suatu model haruslah mempunyai banyak titik kontak (points of contact) dengan kenyataan (reality) dan pembandingan yang berulang kali dengan dunia nyata (real world) melalui titik-titik kontak tersebut. Kemudian barulah model itu dapat dijadikan sebagai suatu dasar untuk memahami dunia nyata dan untuk merancang kebijakan-kebijakan yang dapat mengubah dunia nyata tersebut.

Doa Belajar

Tinggalkan komentar

DOA DAN WIRID UNTUK PELAJAR

SURAT ALFATIHAH : Do’a Pembuka Segala Urusan.

SURAT AL_INSYIRAH : Untuk melapangkan dan melegakan hati.SHOLAWAT NABI MUHAMMAD SAW : Do’a penerang hati.

Allahumma sholli ‘ala muhammadin, Allahumma sholli ‘alaihi wasalim.

WIRID supaya ALLAH ridho, kegiatan yang kita laksanakan.

Rodhiitu billahi robba, wabii islaami diinaa, wabi Muhammad sholallahu ‘alaihi wasallam nabiyan wa rosulla.

Do’a ketika ada pembahasan suatu perkara atau permasalahan.

Robbisyrohli shorii, wayahsirlii amriim wahlulu uqdatan min lisanii yafkohuu qoulii.

Do’a moho ditambah Ilmu dan Femahaman.

Robbi zidnii ‘ilmaan, warzuknii fahmaan.

Do’a agar mudah faham dan hapal pelajaran.

Allahummarzuqna ya Rabbi fahman-nabiyin, wa-hifzal-mursalin, wa-ilhamal-mala-ikatil-muqarrabin fi-afiatin ya  arhamarohimiin.

“Ya Allah! Kurniakanlah kami fahaman para nabidan hafalan para rasul serta mendapat ilham para malaikat yang hampir denganMu juga kurniakanlah kami kesihatan wahai Yang Amat Mengasihani.”

Do’a agar kita menjadi pakar dibidangnya.

Allahummaftah ‘alaya futuuhal ‘arifiin. Wa faqqihni fiiddiin.

“Ya Allah, terangkanlah hatiku seperti terangnya hati-hati orang yang arif. Fahamkan aku perkara agama ku.”

Ditulis oleh : Amrullah Ibrahim

Perangkat Keras

Tinggalkan komentar

Istilah perangkat keras meliputi semua bagian-bagian dari sebuah komputer yang merupakan objek nyata. Sirkuit, menampilkan, pasokan listrik, kabel, keyboard, printer dan tikus adalah semua perangkat keras.

Sejarah komputer Generasi hardwareFirst (Mekanikal / Elektromekanik) Kalkulator mekanisme Antikythera, Difference Engine, Norden bombsightProgrammable Devices Jacquard tenun, Analytical Engine, Harvard Mark I, Z3 Second Generation (Vacuum Tubes) Kalkulator Atanasoff-Berry Computer, IBM 604, UNIVAC 60, UNIVAC 120 Programmable Devices ENIAC, EDSAC, EDVAC, UNIVAC I, IBM 701, IBM 702, IBM 650 Z22 Third Generation (Discrete transistor dan SSI, MSI, LSI Integrated sirkuit) Elektronik IBM 7090, IBM 7080, System/360, IKATAN komputer mini PDP -8, PDP-11, System/32, System/36 Generasi Keempat (VLSI sirkuit terpadu) komputer mini VAX, IBM System i.

4-bit microcomputer Intel 4004, Intel 4040, 8-bit microcomputer Intel 8008, Intel 8080, Motorola 6800, Motorola 6809, MOS Technology 6502, Zilog Z80, 16-bit microcomputer 8088, Zilog Z8000, WDC 65816/65802, 32-bit komputer mikro 80386, Pentium, 68000, arsitektur ARM, mikrokomputer 64-bit [16] x86-64, PowerPC, MIPS, SPARC Embedded computer 8048, 8051.

Komputer Desktop komputer pribadi, komputer Home, komputer Laptop, Personal Digital Assistant (PDA), Portable komputer, komputer Tablet, dpt dipakai komputer Theore vertikal / eksperimental Quantum komputer, komputer kimia, komputasi DNA, Optical komputer, spintronics berbasis komputer

Lainnya Perangkat Keras perangkat TopicsPeripheral (Input / output) Input Mouse, Keyboard, Joystick, Image scanner Output Monitor, Printer, Baik Floppy disk drive, Hard disk, Optical disc drive, teleprinter, Komputer bus berbagai Pendek RS-232, SCSI, PCI, USB , Long range (Computer networking) Ethernet, ATM, FDDI